

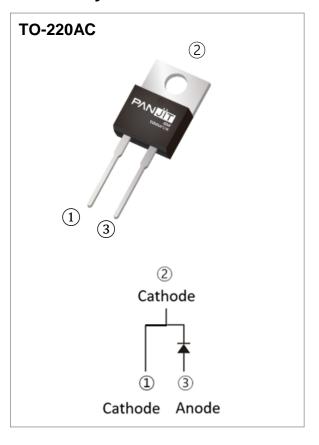
Optima Diode - Low forward voltage drop, Fast Recovery Diode

VRRM	650 V	lF	30 A
V _{F(Typ.)}	1.3 V	T _{RR(TYP)}	210 ns

Features

- Low Voltage Drop
- Suppressed switching loss with low TRR
- Soft recovery characteristic for better EMI
- High junction temperature 175 °C
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data


• Case: TO-220AC molded plastic

• Terminals: Solderable per MIL-STD-750, Method 2026

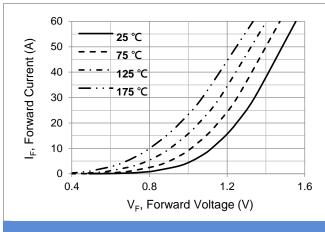
• Approx. Weight: 1.8903 grams

Application

• PFC, UPS, PV Inverter

Maximum Ratings and Thermal Characteristics (Tc = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	LIMIT	UNITS
Repetitive Peak Reverse Voltage	V_{RRM}	650	V
DC Blocking Voltage	V _{DC}	650	V
Diode Forward Current, D=1 @ Tc=152°C	I _{F(AV)}	30	Α
Repetitive Peak Surge Current tp = 8.3 ms, sine-wave, D=0.5	I _{FRM}	60	А
Peak Forward Surge Current tp = 8.3 ms, single half sine-wave	I _{FSM}	300	А
Peak Forward Surge Current tp = 10 ms, single half sine-wave	I _{FSM}	300	А
Maximum I ² t for fusing (tp = 10 ms)	l²t	450	A ² s
Maximum Power Dissipation	P _{total}	268	W
Operating Junction Temperature Range	TJ	-55~175	°C
Storage Temperature Range	T _{STG}	-55~175	°C
Thermal Resistance	R ₀ JC	0.56	°C/W
THEIIIdi Resistance	ReJA	60	°C/W



Electrical Characteristics (T_C = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
		I _F = 30 A, T _J = 25 °C	-	1.3	1.7	
Forward voltage drop	VF	I _F = 30 A, T _J = 125 °C	-	1.2	-	V
		I _F = 30 A, T _J = 150 °C	-	1.1	-	
		V _R = 650 V, T _J = 25 °C	-	0.03	30	
Reverse leakage current	I_R	V _R = 650 V, T _J = 125 °C	-	7	150	μΑ
		V _R = 650 V, T _J = 150 °C	-	122	1000	1
		I _F =0.5A, I _R =1A, I _{RR} =0.25A		40.0		
		T _J = 25 °C	-	40.6	-	ns
Reverse recovery time	T_RR	I _F = 1 A, V _R = 30 V,				
		di/dt = 100 A/μs,	-	36	-	ns
		T _J = 25 °C				
Reverse recovery time	T_RR	I _F = 30 A, V _R = 400 V,	-	210	-	ns
Peak recovery current	I _{RRM}	di/dt = 200 A/μs,	-	4	-	Α
Reverse recovery charge	Q _{RR}	T _J = 25 °C	-	400	-	nC
Softness factor = tb / ta	S		-	6.2	-	
Reverse recovery time	T_RR	$I_F = 30 \text{ A}, V_R = 400 \text{ V},$	-	330	-	ns
Peak recovery current	I _{RRM}	di/dt = 200 A/μs,	-	9	-	Α
Reverse recovery charge	Q _{RR}	T _J = 125 °C	-	1600	-	nC
Softness factor = tb / ta	S		-	9	-	
Reverse recovery time	T_RR	$I_F = 30 \text{ A}, V_R = 400 \text{ V},$	-	115	-	ns
Peak recovery current	I _{RRM}	di/dt = 1000 A/μs,	-	19	-	Α
Reverse recovery charge	Q _{RR}	T _J = 25 °C	-	967	-	nC
Softness factor = tb / ta	S		-	5	-	
Reverse recovery time	T_RR	$I_F = 30 \text{ A}, V_R = 400 \text{ V},$	-	155	-	ns
Peak recovery current	I _{RRM}	di/dt = 1000 A/μs,	-	30	-	Α
Reverse recovery charge	Q_{RR}	T _J = 125 °C	-	2498	-	nC
Softness factor = tb / ta	S		-	3.9	-	

TYPICAL CHARACTERISTIC CURVES

Fig.1 Forward Characteristics

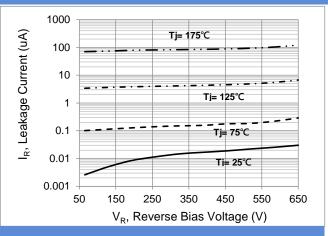


Fig.2 Reverse Characteristics

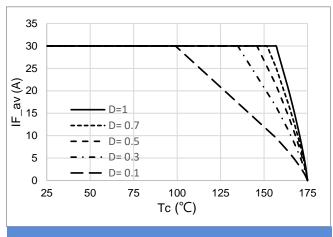
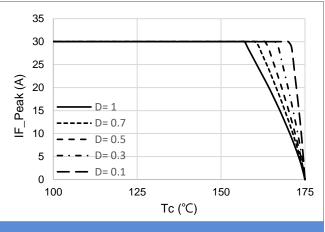
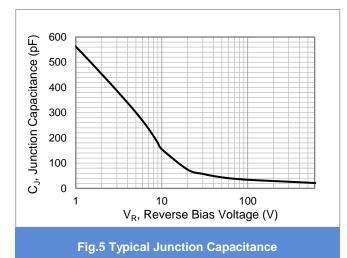
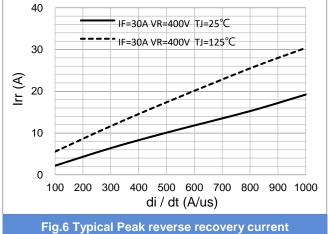
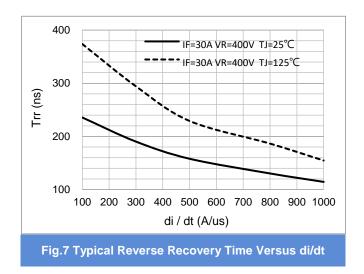


Fig.3 Average Current Derating Curve


Fig.4 Peak Current Derating Curve

rig.6 Typical Peak reverse recovery current versus di/dt

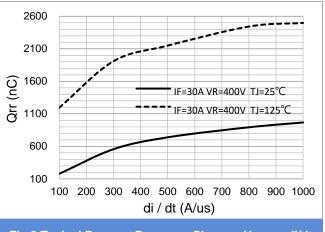


Fig.8 Typical Reverse Recovery Charges Versus di/dt

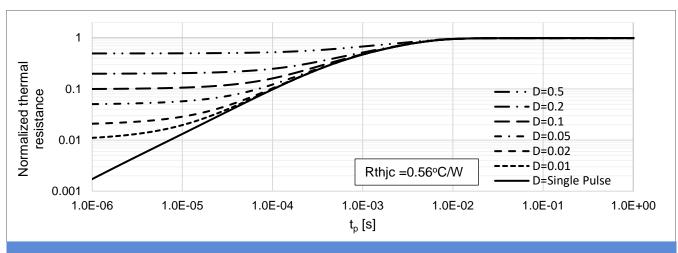
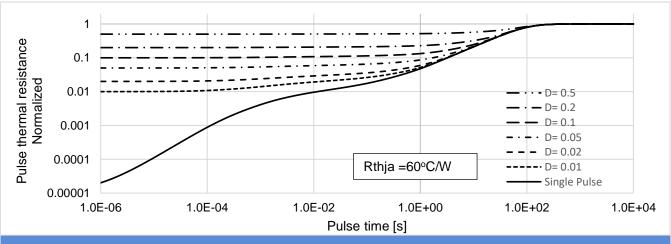
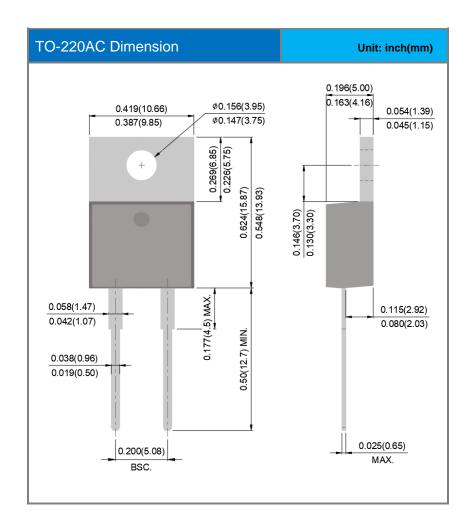


Fig.9 Max. transient thermal impedance Junction to Case




Fig.10 Transient thermal impedance Junction to Ambient

Product and Packing Information

Part No.	Package Type	Packing Type	Marking
PSDP3065L2	TO-220AC	50pcs / Tube	SDP3065L2

Packaging Information

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document follow PCN procedure. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing
 or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.